
 

 

  
Abstract—In this paper we present two algorithms to calculate 

the approximate solution of a Fredholm integral equation. These 
approximation algorithms were obtained under the conditions of 
theorem of existence and uniqueness of the solution of this integral 

equation in the sphere ],[);( baCrfB ⊂ , that has been presented in 
[14]. The approximate solution of this integral equation was obtained 
by applying the successive approximations method and for the 
approximate calculation of integrals that appear in the terms of the 
successive approximations sequence were used two quadrature 
formulas: the trapezoids formula and the rectangles formula, 
respectively. 
 

Keywords—Approximate solution, approximation algorithm, 
Fredholm integral equation, method of successive approximations, 
quadrature formula. 

I. INTRODUCTION 

OME of the approximation algorithms for the solution of 
several integral equations, established by the author, were 

published in the papers [1], [4], [5], [10], [12]. We mention 
the following three nonlinear Fredholm integral equations, for 
which were set approximation algorithms of the solution: 
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where K∈C([a,b]×[a,b]×R2) or K∈C([a,b]×[a,b]×J2), J ⊂R is 
a closed interval, g∈C([a,b],[a,b]) and f∈C[a,b]; 
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where K∈C([a,b]×[a,b]×R3) or K∈C([a,b]×[a,b]×J3), J ⊂R is 
a closed interval and f∈C[a,b], ([1], [4]); 
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where K∈C([a,b]×[a,b]×R4) or K∈C([a,b]×[a,b]×J4), J ⊂R is 
a closed interval, g∈C([a,b],[a,b]), f∈C[a,b], ([5], [10]). 
 In each of the three cases we have a, b ∈ R, a < b. 

Moreover, for the solution of these integral equations, but, 
also for others, such the integral equation of epidemics 
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where t ∈R, τ > 0  is a parameter, were studied the existence 
and uniqueness, lower and upper subsolutions, data 
dependence and differentiability with respect to a parameter 
(see [1], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]). 
 In this paper, the approximation algorithms were established 
for the following Fredholm integral equation: 
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where a, b ∈ R, a < b, K∈C([a,b]×[a,b]), h∈C([a,b]×R3) or 
h∈C([a,b]×J3), J ⊂R is a closed interval and f∈C[a,b]. 

The author studied the existence and uniqueness of the 
solution of this integral equation, in the space C[a,b] and in the 

sphere ],[);( baCrfB ⊂ , respectively, and he obtained two 

theorems that were published in [14]. We present below these 
theorems. 

First of all, we denote by MK a positive constant, such that 
 
|K(t,s)| ≤ MK,  for all t, s∈[a,b]. 
 
Theorem 1 (of existence and uniqueness in the space 

C[a,b], [14]) 
For the Fredholm integral equation (1) we assume that: 

(i) K∈C([a,b]×[a,b]), h∈C([a,b]×R3), f∈C[a,b]; 

(ii) there exists α, β, γ > 0 such that 

|h(s, u1, u2, u3)–h(s, v1, v2, v3)| ≤ α|u1–v1|+β|u2–v2|+γ|u3–v3|, 
for all s∈[a,b],  ui, vi∈R,  i = 1, 2, 3; 

(iii) MK⋅(α+β+γ)⋅(b–a) < 1. 

Under these conditions the integral equation (1) has a 
unique solution x*∈C[a,b], that can be obtained by the 
successive approximations method, starting at any element 

],[0 baCx ∈ . 

Moreover, if xm is the m-th successive approximation, then 
we have the following estimation: 
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Theorem 2 (of existence and uniqueness in the sphere 

],[);( baCrfB ⊂ , [14]) 

For the Fredholm integral equation (1) we assume that: 

(i) K∈C([a,b]×[a,b]), h∈C([a,b]×J3), J⊂R is a closed 
interval, f∈C[a,b]; 

(ii) there exists α, β, γ > 0 such that 

|h(s, u1, u2, u3)–h(s, v1, v2, v3)| ≤ α|u1–v1|+β|u2–v2|+γ|u3–v3|, 

for all s∈[a,b],  ui, vi∈J⊂R,  i = 1, 2, 3; 

(iii) MK⋅(α+β+γ)⋅(b–a) < 1. 

If there exists r > 0 such that 
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and the following condition is fulfilled: 

(iv) MK⋅Mh⋅(b – a) < r, 

where Mh is a positive constant such that, for the restriction 

3],[ Jba
h

×
, J⊂R a closed interval, we have: 

|h(s, u, v, w)|  ≤  Mh,   for all s∈[a,b], u, v, w ∈J, 

then the integral equation (1) has a unique solution 

x*∈ ],[);( baCrfB ⊂ , that can be obtained by the successive 

approximations method, starting at any element 

],[);(0 baCrfBx ⊂∈ . 

Moreover, if xm is the m-th successive approximation, then 
the estimation (2) is met. 
 

The integral equations of similar type have been studied in 
[2], [3], [5], [6], [7], [8], [9], [11], [13]. 

The numerical analysis of an integral equation consists in 
establishment of an algorithm for approximating the solution 
of the studied equation. 

Under the conditions of theorem 2, presented above, the 
purpose of this paper is to develop two methods for 
approximating the solution of the integral equation (1), using 
the successive approximations method, and for approximate 
calculation of the integrals that appear in the terms of the 
successive approximations sequence were used the following 
two quadrature formulas: the trapezoids formula and the 
rectangles formula, respectively. 

II. THE STATEMENT OF THE PROBLEM 

To establish these procedures for approximating the solution 
of the integral equation (1) were used the results given by Gh 
Coman, I. Rus, G. Pavel and I. A. Rus [3], D. V. Ionescu [16], 
I. A. Rus [22], V. Mureșan [18] and Gheorghe Marinescu [17]. 

We suppose that the conditions of theorem 2 are fulfilled 
and therefore the integral equation (1) has a unique solution in 

the sphere ],[);( baCrfB ⊂ . 

We denote this solution by x*∈ ],[);( baCrfB ⊂  and it can 

be obtained by the successive approximations method, starting 

at any element x0∈ ],[);( baCrfB ⊂ . 

In addition, if xm is the m-th successive approximation, then 
the estimation (2) is true. 

Therefore, for the determination of x* we apply the 
successive approximations method. 

To get a better result, it is considered an equidistant division 
∆ of the interval [a,b] through the points: 
 
∆: bttta n =<<<= ...10 . 

 
Now, we have the sequence of successive approximations: 
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Next, in the following two sections we present two methods 
for approximating the solution of integral equation (1), 
obtained by applying the successive approximations method 
and using also, the trapezoids formula and the rectangles 
formula for the approximate calculation of the integrals that 
appear in the terms of the successive approximations sequence. 

III.  USED QUADRATURE FORMULAS 

A. Trapezoids formula 

Let g∈C2[a,b] be a function and we present the trapezoids 
formula for calculating the approximate value of integral: 

 

∫
b

a
dttg )( . 

 
 First, we consider an equidistant division of the interval 
[a,b] through the points: 
 
∆: bttta n =<<<= ...10 . 

 
The trapezoids formula for calculation of the approximate 

value of this integral has the expression: 
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estimation: 
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B. Rectangles formula 

Let ],[1 baCg∈  be a function and we present the rectangles 

formula for calculating the approximate value of integral: 
 

∫
b

a
dttg )( . 

 
 For this, we consider an equidistant division of the interval 
[a,b] through the points: 
 
∆: bttta n =<<<= ...10 . 

 
The rectangles formula for calculation of the approximate 

value of this integral has two expressions: 
 a) if it consider the intermediary points of the division ∆ of 
the interval [a,b] on the left end of the partial intervals ξI = ti , 
then the rectangles formula is defined by the relation: 
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 b) if it consider the intermediary points of the division of the 
interval [a,b] on the right end of the partial intervals ξI = ti+1, 
then the rectangles formula is defined by the relation: 
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The rest of the formula ∑
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estimation: 
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IV. APPROXIMATION OF THE SOLUTION USING THE 

TRAPEZOIDS FORMULA 

 To that effect we suppose that K∈C2([a,b]×[a,b]), 
h∈C2([a,b]×J3), J⊂R is a closed interval and f∈C2[a,b]. 
 For the calculation of the integrals that appear in the terms 
of the successive approximations sequence, the trapezoids 
formula (5)+(6) is going to be applied. 
 In the general case for xm(tk) we have: 
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with the estimation of the rest 
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 Since K∈C2([a,b]×[a,b]) and h∈C2([a,b]×J3), it results that 
K⋅h∈C2([a,b]×[a,b]×J3) and there exists the derivative of the 

function K⋅h from the expression of T
kmR , , and therefore it has 

to be calculated. So, we have: 
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If we take into account the expression of the derivatives of  

xm-1(t) and we denote 
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then we obtain the following estimations for xm-1(t) and its 
derivatives: 
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while for the derivative of function K⋅h we have the 
estimation: 
 

[ ] ≤⋅ −−− s
bxaxsxshstK mmmk

"
))(),(),(,(),( 111  

 [ ]++−+≤ TTTTTTT MabMMMMMM 3212121 )(54  

 [ ] TTTTTT MMabMMMM 0
2

32121 )( =+−+ . 

 

 It is obvious that TM 0  doesn’t depend on m and k, therefore 

the estimation of the rest T kmR ,  is: 
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where 2),,,,,,(00 ≤= αααα fDfhDhKDKMM TT , and thus, 

we obtain a formula for the approximate calculation of the 
integrals that appear in the terms of the successive 
approximations sequence. 
 Using the method of successive approximations and the 
formula (9) with the estimation of the rest resulted from (11), 
we suggest further on an algorithm, in order to solve the 
integral equation (1) approximately. To this end, we will 
calculate approximately the terms of the successive 
approximations sequence. Thus, we have: 
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 This reasoning continues for m = 3 and through induction 
we obtain: 
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 Since the conditions of theorem 2 of existence and 
uniqueness of the solution of integral equation (1), are 
fulfilled, it results that  MK⋅(α+β+γ)⋅(b–a) < 1, and we have the 
estimation: 
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sequence ( ) Nmmx ∈  using an equidistant division of the interval 
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calculation: 
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which, using the Chebyshev norm, becomes: 
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 Now, using the estimates (2) and (14) it is obtain the 
following result. 
 
 Theorem 3 Suppose that the conditions of theorem 2 are 
fulfilled. In addition, we assume that the exact solution x* of 
the integral equation (1) is approximated by the sequence 

( ) Nmkm tx ∈)(~ , nk ,0= , on the nodes tk , nk ,0= , of the 

equidistant division ∆ of the interval [a,b], using the 
successive approximations method (4) and the trapezoids 
formula (5)+(6). 
 Under these conditions, the error of approximation is given 
by the following evaluation: 
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V. APPROXIMATION OF THE SOLUTION USING THE RECTANGLES 

FORMULA 

 To that effect we suppose that K∈C1([a,b]×[a,b]), 
h∈C1([a,b]×J 3), J⊂R is a closed interval, f∈C1[a,b]. 
 For the calculation of the integrals that appear in the terms 
of the successive approximations sequence, the rectangles 
formula (7)+(8) is going to be applied. 
 In the general case for xm(tk) we have: 
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 Since K∈C1([a,b]×[a,b]) and h∈C1([a,b]×J3), it results that 
K⋅h∈C1([a,b]×[a,b]×J3) and there exists the derivative of the 

function K⋅h from the expression of D
kmR , , and therefore it has 

to be calculated. So, we have: 
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then we obtain the following estimations for xm-1(t) and its 
derivative: 
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while for the derivative of function  K⋅h  we have the 
estimation: 
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 It is obvious that DM 0  doesn’t depend on m and k, so the 

estimation of the rest is: 
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where 1),,,,,,(00 ≤= αααα fDfhDhKDKMM DD  and thus, 

we obtain a formula for the approximate, calculation of the 
integrals that appear in the terms of the successive 
approximations sequence. 
 Using the method of successive approximations and the 
formula (16) with the estimation of the rest resulted from (18), 
we suggest further on an algorithm in order to solve the 
integral equation (1) approximately. To this end, we will 
calculate approximately the terms of the successive 
approximations sequence and we obtain: 
 
x0(tk) = f(tk) 
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 This reasoning continues for m = 3 and through induction 
we obtain 
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 Since the conditions of theorem 2 of existence and 
uniqueness of the solution of integral equation (1), are 
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fulfilled, it results that  MK⋅(α+β+γ)⋅(b–a) < 1, and we have the 
estimation: 
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     Thus, we have obtained the sequence, 

( ) nktx Nmkm ,0,)(~ =∈ , that estimates the successive 

approximations sequence ( ) Nmmx ∈  using an equidistant 

division of the interval [a,b], ∆: bttta n =<<<= ...10 , with the 

following error in calculation: 
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which, using the Chebyshev norm, becomes: 
 

[ ]
D

K
baCmm M

abMn

ab
xx 0

2

],[ ))((1

)(~ ⋅
−++−

−
≤−

γβα
.     (21) 

 
 Now, using the estimates (2) and (21) it is obtain the 
following result. 
 
 Theorem 4 Suppose that the conditions of theorem 2 are 
fulfilled. In addition, we assume that the exact solution x* of 
the integral equation (1) is approximated by the sequence 

( ) Nmkm tx ∈)(~ , nk ,0=  on the nodes tk , nk ,0= , of the 

equidistant division ∆ of the interval [a,b], using the 
successive approximations method (4) and the rectangles 
formula (7)+(8). 
 Under these conditions, the error of approximation is given 
by the evaluation: 
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VI.  CONCLUSION 

 Regarding to these two algorithms presented in this paper, 
we observe the following: 
 a) In both cases were used the method of successive 
approximations; 
 b) The terms of successive approximations sequence were 
approximated using two quadrature formulas: the trapezoids 
formula (5)+(6), and the rectangles formula (7)+(8), 
respectively. 
 c) In order to obtain a better result, in both cases were used 
an equidistant division, ∆, of the interval [a,b] through the 
points bttta n =<<<= ...10 . 

d) In the both cases, were obtained a new sequence 

( ) nktx Nmkm ,0,)(~ =∈ , that estimates the successive 

approximations sequence ( ) Nmmx ∈ . 

 d) We obtained the following estimates of the error of 
approximation, on nodes, of the terms of successive 
approximations sequence: 
 - using the trapezoids formula: 
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 - using the rectangles formula: 
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and both values TM 0  and DM0 , from evaluation of rests, are 

independent of m and k. 
 e) The approximation error of the exact solution x* of the 
integral equation (1) through the terms of the new sequence 

( ) nktx Nmkm ,0,)(~ =∈ , is given by the relation (15): 
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when we used the trapezoids formula and by the relation (22): 
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when we used the rectangles formula. 
 f) Of the two estimates of remainder, from above, we deduce 
that the approximation error of the solution obtained by 
applying the successive approximations method is less if the 
trapezoids formula is used, than if the rectangles formula is 
used. 
 Finally, it should be noted that all articles and books, 
respectively, from references constituted an important research 
material in preparation of this article. 
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